

Artificial Intelligence and Machine Learning in Medical Sciences

نسيبه رادى راز

Nasibeh Rady Raz

PhD in Artificial Intelligence and Robotics

Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

radyraz.n@iums.ac.ir

••

عنوان دوره **آنلاین:** هوش مصنوعی در پزشکی با رویکرد بالینی **Online Course: Artificial Intelligence in** Medicine with Clinical Approach

Course Topics	عناوین بیست و چهار جلسه	تاريخ جلسات
Artificial Intelligence (AI) in medicine	معرفی هوش مصنوعی در پزشکی	۲۸ بهمن ۱۴۰۲
AI and Fuzzy systems and its applications in medicine	هوش مصنوعی و سیستم های فازی در پزشکی	۵ اسفند ۱۴۰۲
Machine Learning and its applications in medicine	یادگیری ماشین و کاربردهای آن در پزشکی	۱۲ اسفند۱۴۰۲
Evolutionary systems and its applications in medicine	الگوریتم های بهینه سازی تکاملی و کاربردهای آن در پزشکی	۱۹ اسفند ۱۴۰۲
Neural networks and deep neural networks in medicine	شبکه های عصبی و شبکه های عصبی عمیق در پزشکی	۲۵ فروردین ۱۴۰۳
Application of AI in Early Detection of Disease	کاربرد هوش مصنوعی در تشخیص زودهنگام بیماری ها	۱ اردیبهشت ۱۴۰۳
Swarm Intelligence and multi-agent/swarm in medicine	هوش ازدحامی، سیستم های چند عامله/ازدحامی در پزشکی	۸اردیبهشت ۱۴۰۳
Application of AI in Cancer	کاربردهای هوش مصنوعی در سرطان	۲۲ اردیبهشت ۱۴۰۳
Application of AI in surgery	کاربردهای هوش مصنوعی در جراحی	۲۹ اردیبهشت ۱۴۰۳
Applications of AI in Neurology	کاربردهای هوش مصنوعی در مغز و اعصاب	۵ خرداد ۱۴۰۳
Application of AI in Internal Medicine	کاربردهای هوش مصنوعی در پزشکی داخلی	۱۲ خرداد ۱۴۰۳
Applications of AI in cardiovascular	کاربردهای هوش مصنوعی در قلب و عروق	۱۹ خرداد ۱۴۰۳
Applications of AI in Breast Disease	کاربردهای هوش مصنوعی در بیماری های پستان	۲۶ خرداد ۱۴۰۳
Application of AI in Ophthalmology	کاربردهای هوش مصنوعی در چشم پزشکی	۲ تیر ۱۴۰۳
Application of AI in Nephrology	کاربردهای هوش مصنوعی در نفرولوژی	۹ تیر ۱۴۰۳
Application of AI in Otorhinolaryngology	کاربردهای هوش مصنوعی در گوش و حلق و بینی	۱۶ تیر ۱۴۰۳
Application of AI in Gynecology and obstetrics	کاربردهای هوش مصنوعی در زنان و مامایی	۲۳ تیر ۱۴۰۳
Application of AI in pediatric medicine	کاربردهای هوش مصنوعی در پزشکی اطفال	۳۰ تیر ۱۴۰۳
Application of AI in anesthesia	کاربردهای هوش مصنوعی در بیهوشی	۶ مرداد ۱۴۰۳
Application of AI in emergency medicine	کاربردهای هوش مصنوعی در پزشکی اورژانس	۱۴۰۳ مرداد ۱۴۰۳
Applications of artificial intelligence in orthopedics	کاربردهای هوش مصنوعی در ارتوپدی	۲۰ مرداد ۱۴۰۳
Application of AI in pain management	کاربردهای هوش مصنوعی در مدیریت درد	۲۷ مرداد ۱۴۰۳
Application of AI in pharmacology	کاربردهای هوش مصنوعی در داروسازی	۳ شهریور ۱۴۰۳
Application of AI in dentistry	کاربردهای هوش مصنوعی در دندان پزشکی	۱۰ شهریور ۱۴۰۳

Artificial Intelligence

Al is a multidisciplinary field of study dealing with intelligence, perceiving, and inferring information by machines.

Narrow AI: is used to solve a specific problem. General AI: is used for solving general problems. Super AI: Nobody knows what will happen.

Artificial Intelligence

Aspect of Intelligence

- Generalization
- learning/adapting
- Optimization
- Social Interaction
- Cognition

Machine Learning

In ML machine learn from data without being explicitly programmed.

ML claims to save time, money, and effort

Unsupervised learning

supervised learning

Reinforcement Learning

Example

Example usage (data type)

 Cancer vs healthy classification (gene expression)

- Multiclass tissue classification (gene expression)
- Genome-wide association analysis (SNP)
- Pathway-based classification (gene expression, SNP)
- Protein secondary structure prediction (amino acid sequence)
- Sequence similarity prediction (nucleotide sequence)
- Protein family clustering (amino acid sequence)
- Clustering genes by chromosomes (gene expression)
- Classification of outliers (gene expression)
- Data visualization (single cell RNA-sequencing)
- Clustering gene expression profiles (gene expression)

13

Supervised Learning

Supervised Learning and discrete data: Classification

- Classifier accuracy depends on dimension and type of data set.
- Single classification techniques are not capable enough to handle huge data. Sometimes the accuracy level changes according to the number of classifiers employed.
- To overcome this problem, fusion algorithms have been introduced.

classifier ensemble

- Machine learning-based classification models have improved accuracy by combining the results of multiple ML algorithms. Such an ensemble approach
- Ensemble or fusion methods consider the output of each classifier as input. It considers the class level accuracy collected from all classifiers rather than the whole dataset. The model has to run all classification algorithms. It takes more time but efficacy increases.

Ensembles

collection of machine learning models or النام يزعني ونعات بداني الان learners. For grouping weak learning models to create a more accurate learner

creating multiple independent models with datasets using the bootstrap sampling technique for reducing error within a noisy dataset by reducing variance.

produces a collection of predictive models iteratively. Each new model learn s from the errors of previous models.

Regression

- Regression involves predicting an output that is a continuous variable.
- As a regression-based system predicts a value, performance is measured by assessing the number of prediction errors.

Decision trees

a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks.

Improving medical decision trees by combining relevant health-care criteria

دانتگاه علوم پزشگی وخدمات بهداشتی، درمانی ایران

Artificial Neural Network

Sample Artificial Neural Network (ANN) model for the diagnosis of cancer

Unsupervised Learning

Clustering

These models work by identifying similarities among data items and classifying them according to the presence or absence of such commonalities.

Clustering

Types of Clustering in Machine Learning Hierarchical clustering

Clusters

Exclusive

Clusters

Probabilistic clustering Fuzzy clustering

Reinforcement learning

learning the optimal behavior in an environment to obtain maximum reward. This optimal behavior is learned through interactions with the environment and observations of how it responds, similar to children exploring the world around them and learning the actions that help them achieve a goal.

Semi-supervised Learning

Semi-supervised learning is the type of machine learning that uses a combination of a small amount of labeled data and a large amount of unlabeled data to train models.

Self-Supervised Learning

a machine learning process where the model trains itself to learn one part of the input from another part of the input.

Self-Supervised Learning Workflow

Online Learning

computationally infeasible to train over the entire dataset, Or dynamically adapt to new patterns in the data. data becomes available in sequential order and is used to update the best predictor for future data at each step,

29

Multi-task Learning

multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately

Transfer learning

Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

VS

Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Representation learning or feature learning

a class of machine learning approaches that allow a system to discover the representations required for feature detection or classification from raw data.

Federated learning

Overfitting and Underfitting

Overfitting: Good performance on the training data, poor generalization to other data.

Underfitting: Poor performance on the training data and poor generalization to other data

Data

- Data is everywhere.
- Data itself can take many forms—character, text, words, numbers, pictures, sound, or video.
- data is a set of values of qualitative or quantitative variables.
- Each piece of data falls into two main types: structured and unstructured.
- To become information, data requires interpretation.

Structured data

Some Data Source

- Web and social media data—clicks, history, health forums
- Machine-to-machine data—sensors, wearables
- Big transaction data—health claim data, billing data
- Biometric data—fingerprints, genetics, biomarkers
- Human-generated data—e-mail, paper documents, electronic medical records

Definition

- Instance: A single row of data or observation.
- Feature: A single column of data. It is a component of the observation.
- Data type: This refers to the kind of data represented by the feature (e.g., Boolean, string, number)
- Dataset: A collection of instances used to train and test machine learning models.
- Training dataset: Dataset used to train the machine learning model
- Testing dataset: Dataset used to determine accuracy/performance of the machine learning model.

ML Performance Metrics

- Accuracy
- Precision
- Recall
- F1-Score

Predision score	AUC	Recal	
			l I
MODEL	EVAL		,
Confusion matrix	F1 Score	Loss	
		•	

MACHINE LEARNING IN HEALTHCARE Examples

- Microsoft
- Tempus: making precision medicine
- Tebra: Medical Automation Solution
- PathAI: AI-powered pathology
- Ciox Health: Healthcare Data Management
- Solutions:
- Beta Bionics: insulin delivery system
- Subtle Medical: AI-based software solution that enhances up to 60% faster MRI
- Pfizer: drug discovery company
- Insitro: drug discovery company
- BioSymetrics: drug discovery company

Potential Epidemic Outbreaks

HML systems to monitor and anticipate potential epidemic outbreaks in various parts of the world.

This digital system can forecast disease outbreaks by gathering data from satellites, real-time updates on social media, and other crucial information from the web.

Early Detection of Disease

Multi-omics Data

Analyze genetic data

Protein Analyzing

Al and Infectious disease

Al and Infectious disease

Al and vaccine development

Al in drug delivery

Wearable for wellness monitoring

• Support the diagnosis process and predict future issues

Clinical decision support

Precision Medicine

- Doctors use precision for anticipating a treatment or a disease before its onset which is based on therapies and tests.
- Al precision medicine for disease detection provides useful insights such as type of disease and further course of medications.

Development of disease models

Predictive analytics

• predict a particular developing a certain disease allowing for earlier intervention and treatment.

Disease Risk Assessment

Cancer Recurrence Prediction

Guihong Wan et al., Prediction of early-stage melanoma recurrence using clinical and histopathologic features," npj Precision Oncology volume 6, Article number: 79 (2022)

Predicting the Risk of Cancer

Hamid Behravan, Predicting breast cancer risk using interacting genetic and demographic factors and machine learning, Scientific Reports volume 10, Article number: 11044 (2020)

Analyzing Signaling Pathway

Artificial intelligence in cancer target identification and drug discovery, Signal Transduction and Targeted Therapy volume 7, Article number: 156 (2022)

Predicting Mortality and Morbidity

Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data, Scientific Reports volume 12, Article number: 21269 (2022)

Predicting Treatment Response

Machine learning approaches to drug response prediction: challenges and recent progress, npj Precision Oncology volume 4, Article number: 19 (2020) 63

Al-based Patient Monitoring

Intelligent Oncology

Digital pathology

11 H

000

Е

Imaging

• The AI software is designed to compare current and previous images, analyze them, and prioritize them too.

Radiology

- Interpretation of Radiology Images
- Virtual Biopsy

Gastroenterology

- April 2021: GI Genius (Cosmo Artificial Intelligence—AI, LTD)
- It is a computer-assisted reading tool designed to aid endoscopists in detecting colonic mucosal lesions (such as polyps and adenomas) in real time during standard whitelight endoscopy.

Claudio Luchini Et al, "Artificial intelligence in oncology: current applications and future perspectives" British Journal of Cancer, vol. 126, pages4–9, 2022. 70

Helping in Medical Decision Making

Inside the operation room, precision, timely assistance, and the surgeon's expertise are the key to success.

Uncertainty in Decision Making

Cooperative Decision Making

High Complexity

interrelationships

Time Constraint

Reliable and effective

Predict the risk of major complications after surgery

- flap failure
- surgical site infection
- wound dehiscence
- deep vein thrombosis,
- reintubation

Benjamin Shickel Et al., "Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks," Scientific Reports volume 13, Article number: 1224 (2023) 72

Predict the risk of mortality after surgery

Seung Wook Lee Et al., "Multi-center validation of machine learning model for preoperative prediction of postoperative mortality," npj Digital Medicine volume 5, Article number: 91 (2022)

Medical Robotics

Post-operative Phase

- Surgical room organization
- Estimating remaining surgical time
- Estimating patient's recovery time
- Estimating blood loss
- Patient Monitoring
- Remote Patient Monitoring
- Modification of medical treatment

Pranav Rajpurkar Et al, "AI in health and medicine," Nature Medicine volume 28, pages31–38 (2022). Julián N. Acosta Et al., "Multimodal biomedical AI," Nature Medicine volume 28, pages1773–1784 (2022)

Enhance surgical training

- Training
- Scoring the performance of surgical trainees.

Omri Bar Et al., "Impact of data on generalization of AI for surgical intelligence applications," Scientific Reports volume 10, Article number: 22208 (2020)

Recai Yilmaz Et al., "Continuous monitoring of surgical bimanual expertise using deep neural networks in virtual reality simulation," npj Digital Medicine volume 5, Article number: 54 (2022).

Pietro Mascagni Et al., "Computer vision in surgery: from potential to clinical value," npj Digital Medicine volume 5, Article number: 163 (2022).

Hospitalization, Triage tools, Operating Room

- Predictions of the surgical case duration
- Precise scheduling, limiting waste of resources
- Identifying surgeries with high risks of cancellation

[1] J.-Ting Lee, "Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department," *Scientific Reports*, vol. 11, No. 19472, 2021.

Organ Transplant

- Optimal transplant donor organ
- organ-allocation

[1] N. Gotlieb Et al., "The promise of machine learning applications in solid organ transplantation," *npj Digital Medicine*, vol. 5, No. 89, 2022.

Al can predict the progression of a disease

Brain Cancer (AI and optical histology (SRH))

• Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment.

Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging, Nature Medicine volume 29, pages828–832 (2023)

Walking naturally after spinal cord injury using a brain–spine interface

Walking naturally after spinal cord injury using a brain–spine interface, Nature volume 618, pages126–133 (2023)

Cross-Modal Integration and Transfer Learning Using Fuzzy Logic Techniques for Intelligent Upper Limb Prosthesis

Jin Huang^(D), Zhijun Li^(D), *Fellow, IEEE*, Haisheng Xia^(D), Guang Chen^(D), *Member, IEEE*, and Qingsheng Meng

Then the sEMG signals and image information are integrated to jointly determine the grasping posture of the bionic hand based on fuzzy decision strategy. دانتگاه علوم پزشگی وخدمات مهداشتی، درمانی ایران Fusing multisensory data and using cross-modal integration, the system is capable of crossmodally recognizing multimodal information. Second-level fuzzy decision Vision fuzzy decision strategy strategy First-level fuzzy decision strategy Camera YOLOv5 Fuzzification network Roundness division Rule base **RGB/depth** First-level **Real-time** Grasp decision information detection posture Defuzzify Size division Choose the suitable grasp posture **sEMG** classification Classification Transfer Acquire Preprocess **EMG** signal result learning Offline training Send instructions to motors

First, a transfer learning approach is proposed to improve the decoding of human's intent and enhance the effectiveness of skill transition.

Stroke	Stroke detection	Type of Stroke detectio	n Stroke gra	ىنىرى CT Score nding
	large vessel occlusion detection	Predict image and clinic outcome	ging tri al quanti s surve	age, fication, eillance
	9			
NEUROIMA	LESION GING SEGMENTATION & DETECTION	PREDICTION & PROGNOSIS	IMPROVING LIFESTYLE	

Brain-implanted AI chip

Treating brain disorders using implants

Lawrence Livermore Laboratory scientists are developing a treatment for brain disorders, such as PTSD, using microprocessors to control implanted electrode arrays. Here's how they work:

Robotics and Automation

control prosthetic limbs

linking the human brain to an external AI system

neural interface

86

Al in Internal Medicine

Artificial Intelligence in Cardiology

New types of Breast Cancer Biopsy

S1 Volatile biomarker S2 Supervised machine Sensor arrays learning analysis S32 Breath biopsy Breast cancer cells

Sensor responses

Breath biopsy of breast cancer using sensor array signals and machine learning analysis, Scientific Reports volume 11, Article number: 103 (2021) 89

Al in Ophthalmology

[1] A. Rao Et al., "Accessible artificial intelligence for ophthalmologists," *Eye*, vol. 36, pp. 683, 2022.
[2] S. Jeon Et al., "AI papers in ophthalmology made simple," *Eye*, vol. 34, pp. 1947–1949, 2020. 90

[1] T. J. Loftus Et al., "Artificial intelligence-enabled decision support in nephrology," *Nature Reviews Nephrology*, vol. 18, pp. 452–465, 2022. 91

Al in Otolaryngology

[1] N. A. Lesica Et al., "Harnessing the power of artificial intelligence to transform hearing healthcare and research," *Nature Machine Intelligence*, vol. 3, pp. 840–849, 2021. 92

Obstetrics and Gynecology

Automatic mid-sagittal plane detection

Automatic segmentation of the nuchal membrane and the edge of the soft tissue overlying the cervical spine

Calculates the minimum vertical distance between the two lines and computes the largest as the NT measurement

endometriosis

Artificial intelligence in Fertility technologies

Al in Pediatrics

[1] Sitek Et al., "Artificial intelligence in the diagnosis of necrotising enterocolitis in newborns," *Pediatric Research*, 2022.

[2] H. Liang Et al., "Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence," *Nature Medicine*, vol. 25, pp.433–438, 2019.

[3] L. A. Knake Et al., "Artificial intelligence in pediatrics: the future is now," *Pediatric Research*, 2022.

Anesthesiology

[1]N. Miyaguchi Et al., "Predicting anesthetic infusion events using machine learning," *Scientific Reports*, vol. 11, No. 23648, 2021.

Al in Emergency Medicine

Orthopedics

APPLICATIONS OF AI IN ORTHOPEDICS

[1] Zibo Gong Et al., "Automated identification of hip arthroplasty implants using artificial intelligence," *Scientific Reports*, vol. 12, No. 12179, 2022.

Al in Pain Management

- Automatically personalize the intensity and type of patient support.
- Assess each patient's pain symptoms frequently
- Integrated pain management.
- Effective treatment plan for each patient.
- Correct dosing for opioid prescriptions

[1] S. D. Tagliaferri Et al., "Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews," *npj Digital Medicine*, vol 3, No. 93, 2020.

Al and Pharmacology Drug Discovery and Targeted Drug Delivery

Al in Dentistry

Benefits of Al

Note that!!

- AI may not replace human doctors.
- Since doctors are trained to not only diagnose and treat diseases but also to provide emotional support to patients.
- AI cannot replace the empathy and compassion that doctors bring to their work.

Nasibeh Rady Raz, Ph.D.

Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

MA, Ph.D., and Postdoc in Artificial Intelligence and Robotics Website: http://radyraz.student.um.ac.ir/

Email: radyraz.n@iums.ac.ir , radyraz@mail.um.ac.ir,

radyraz@yahoo.com

Research Interest:

Artificial Intelligence, Artificial Intelligence in Medicine, Complex Systems, Biomimicry, Cognitive Science, Swarm Intelligence, Nanomedicine, Targeted Drug Delivery, Early Detection of Disease, Swarm Nano Robotics, Cancer Research, Fuzzy Logic and Control, Soft Computing, Neural Networks, Machine Learning, Multi-agent Systems, Distributed Decision Making, Biomarkers, Biophysics, Nature Inspired Algorithms, Computational Cellular/Molecular Biology, Protein Folding